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In this work, a general approximate solution for the configurational force between edge
dislocation and inhomogeneity of an arbitrary shape and properties with coupled thermo-
mechanical loads was developed on the basis of the Eshelby equivalent inclusion theory.
The effect of temperature-dependent elastic properties, thermal expansion coefficient and
yield strength on the configurational forces was analyzed. Furthermore, the configurational
force considered to be the driving force for dislocation migration was innovatively used to
investigate the interaction mechanism between graphene and internal defects of a metal.
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1. Introduction

Metal matrix composites (MMCs) are widely used in aerospace, automotive, and electronics fields
due to their excellent mechanical and physical properties. Generally, metal matrix composites
are subjected to high temperature during manufacturing and service. In a thermomechanical
coupling environment, it is inevitably for dislocation to occur. Subsequently, it is necessary to
understand the relation of the dislocation mobility and the micro failure of MMCs. Currently,
it is generally believed that the micro failure of MMCs is strongly influenced by various elastic
inhomogeneity along with non-elastic inhomogeneity including a void, plastic zone of crack tip.
Though some approximate methods of interaction between inhomogeneity of an arbitrary

shape and dislocation have been established based on the Eshelby equivalent inclusion theory (Li
et al., 2011; Zhang et al., 2013), these investigations were mainly concentrated on the mechanical
strain. In many engineering cases, however, MMCs are often subjected to thermal strain (Wei
et al., 2016; Ebrahimi et al., 2016). Unfortunately, no researches have been reported on the
interaction of edge dislocation with inhomogeneity under coupled thermomechanical strains so
far.
In the Eshelby equivalent inclusion theory, thermal strain can be regarded as additional trans-

formation strain to investigate the mismatch between the matrix and inhomogeneity. Withers
et al. (1989) assumed isotropic thermal expansion of the matrix and the reinforcement, and
studied the thermal residual stress field induced by difference of the thermal expansion coeffi-
cient between SiC short fibers and an aluminum matrix utilizing the Eshelby theory. Peng et al.
(2015) investigated inclusion-crack interaction with coupled mechanical and thermal strains, and
obtained a closed-form solution for the stress intensity factor based on the Eshelby equivalent
inclusion theory and transformation toughening theory. Bennett et al. (2018) studied thermo-
elasticity of porous bonded-particle assemblies considering damage at inter-particle interfaces.
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They developed a modified self-consistent homogenization for particles of an ellipsoidal shape
with anisotropic thermal and elastic expansion properties. For the elastic inhomogeneity, the
equivalent transformation strain can be achieved from the Eshelby equivalent inclusion theory.
Nevertheless, it is quite difficult to obtain the transformation strain of non-elastic inhomogeneity
by the existing methods under coupled thermomechanical strains.

When the configuration (size, shape or position) of material defects varies, the free energy of
the material will change as well. The driving force related to the variation of the configuration
can be designated as a configurational force (CF). The CF was firstly introduced by Eshelby
(1951). The configurational mechanics based on the material space can provide a new way to
solve defects of composites under complex loads. The behavior of crack deflection/penetration in
composites was investigated by the configurational force theory (Sun et al., 2018). Lv et al. (2017)
adopted the theory to analyze the influence of growth of the thermal barrier coating layer on the
crack-tip driving force. Baxevanakis and Georgiadis (2019) discussed the energy release rate and
the configurational force exerted on a climb dislocation dipole, and found that the energy release
rate was significantly influenced by the defect distance and the characteristic material length. A
damage-based temperature-dependent model for ductile fracture was successfully established
based on the concept of the configurational force in literature (Van Goethem and Areias,
2012).

In this paper, an alternative method was proposed to determine the transformation strain in
various inhomogeneity under coupled thermomechanical loads based on the stress equivalence
principle of the Eshelby inclusion theory (Eshelby, 1951) and an approximate continuum the-
ory for the interaction of dislocation with inhomogeneity (Li et al., 2011; Zhang et al., 2013).
Then, a general approximate solution for the configurational forces between edge dislocation
and inhomogeneity with coupled thermomechanical strains was developed, in which the ther-
mal expansion strains between the matrix and inhomogeneity were considered as eigenstrains.
Moreover, the effect of temperature-dependent elastic properties, thermal expansion coefficient
and yield strength on the configurational force was estimated for graphene reinforced metal
composites.

2. Model and formulation

Figure 1 shows the physical problem of this study. Straight edge dislocation whose line coincides
with the z-axis of a Cartesian coordinate system is located at the point (0, 0, 0). The inhomo-
geneity of an arbitrary shape (domain Ω) embedded in an infinite matrix is considered, which
is subjected to the dislocation stress field and the eigenstrain.

Fig. 1. Edge dislocation near inhomogeneity of an arbitrary shape
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The stress field in the infinite matrix with inhomogeneity can be obtained from the Eshelby
inclusion theory (Li et al., 2011; Eshelby, 1951; Mura, 1987). Based on this theory, the stress is
uniform in an inclusion, which can be expressed as

σ = Cme (2.1)

or

σ = Cm(e
C + eA − eT) (2.2)

where Cm is the elastic tensor of the matrix material; e is the elastic strain in the equivalent
homogeneity; eA is the combined strain field of the externally applied strain field and the dis-
location field in the absence of the inclusion; eT is the transformation strain in the inclusion;
eC is the constrained strain, i.e.

eC = SeT (2.3)

Combining Eqs.(2.1)-(2.3), one can obtain

eT = (S− I)−1ε (2.4)

in which

ε = e− eA (2.5)

Thus, the transformation strain can be determined when the elastic strain e in the domain Ω
is given. The common non-elastic inhomogeneity includes voids, plastic zones, etc. The elastic
strain of the void is a zero tensor, and the elastic strain of the plastic zone can be obtained from
the critical stress intensity factor (Li et al., 2011). In addition, the transformation strain in the
differential element dA within the elastic inhomogeneity eT can be expressed as

eT = (1− α)[(α − 1)S+ I]−1eA + α[(α − 1)S+ I]−1e∗T (2.6)

and e∗T is the thermal expansion strain, a typical eigenstrain (Mura, 1987), i.e.

e∗
T = [(1 + ν)∆CTE∆T, (1 + ν)∆CTE∆T, 0] (2.7)

in which α = Ei/Em; Ei and Em are the modulus of inhomogenity and the metal matrix, respec-
tively; ∆CTE is the difference of the thermal expansion coefficient between the inhomogenity
and the metal matrix. For a differential element with a circular section inside the inclusion, the
Eshelby tensor S for plane strain is given by (Mura, 1987)

S =
1

8(1− ν)







5− 4ν 4ν − 1 0
4ν − 1 5− 4ν 0
0 0 2(3− 4ν)






(2.8)

where ν is Poisson’s ratio of the matrix.
Per unit thickness, the elastic energy associated with the transformation between the dislo-

cation and the differential element is given by (Li et al., 2011)

dW = σdije
T
ijdA (2.9)

where σdij is the stress field of dislocation. For edge dislocation, the nonzero stress components
can be expressed by (Mura, 1987)

σd11 = −
µmb

2πr(1− ν)
(3 sin θ cos2 θ + sin3 θ) σd22 =

µmb

2πr(1 − ν)
(sin θ cos2 θ − sin3 θ)

σd12 =
µmb

2πr(1− ν)
(cos3 θ − cos θ sin2 θ)

(2.10)
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where µm is the shear modulus of the matrix material, and b is the Burgers vector of dislocation
(Mura, 1987).

From Eq. (2.9), the total configurational force (CF) can be found in the absence of body
forces

dF =
∂(dW )

∂r
(2.11)

The total CFs acting on the dislocation along x and y directions can be respectively expressed
as

Fx =

∫

Ω

cos θ dF Fy =

∫

Ω

sin θ dF (2.12)

The integrations are conducted on the whole domain Ω occupied by the inclusion. A positive
(negative) value of F corresponds to repulsion (attraction).

3. Applications and discussion

To verify the present solution, a graphene reinforced metal matrix composite is taken as an
example. During manufacturing of the graphene/metal composite, various micro-defects (e.g.,
dislocations, voids, cracks and local plastic deformation zone) often appear in the metal matrix.
In the absence of externally applied loads, the interaction forces of edge dislocation with a void
and graphene (Shao et al., 2012) distributed in the grain boundary at different temperatures are
calculated respectively, as shown in Fig. 2.

Fig. 2. Schematic of the interaction between dislocation, void and graphene

The inclusion of the void is equivalent to an elastic medium with zero stress based on the
Eshelby theory, thereby the elastic strain eij vanishes. In the absence of externally applied strain,
the nonzero strains are (Mura, 1987)

eA11 = −
b(1− 2ν) sin θ
4πr(1− ν)

eA22 = −
b(1− 2ν) sin θ
4πr(1− ν)

eA12 =
b cos θ

4πr(1− ν)
(3.1)

for edge dislocation. Then, from Eq. (2.5), it can be obtained

ε11 = −eA11 ε22 = −eA22 ε12 = −eA12 (3.2)

Combining Eqs. (3.2), (2.4), (2.9) and (2.11), followed by numerical integration of Eq. (2.12),
the total CFs between dislocation and the void are given by

Fvoid−dislocation =

∫

Ω

dFvoid−dislocation (3.3)
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By combining Eqs. (2.6), (2.7), (2.9) and (2.11), along with numerical integration of Eq.
(2.12), the total CFs between dislocation and graphene can be expressed as

Fgraphene−dislocation =

∫

Ω

dFgraphene−dislocation (3.4)

Fig. 3. Comparison of configurational forces at different temperatures: (a) edge dislocation interacting
with a void for the present results and classical solutions; (b) edge dislocation interacting with graphene

Figure 3 shows the interaction between dislocation, graphene and a circular void of radius R
centered at (−r0, 0) (Fig. 2). It is assumed that the diameter l of grains is approximately 200 nm
in the metal matrix. The radius R, diameter l and atomic layer thickness w determine the in-
tegral domain Ω. The mechanical parameters of the metal matrix at 200-400 K are given in
Table 1. For the verification purpose, classical solutions are also shown in Fig. 3a. Compared
with the classical solutions for edge dislocation interacting with the void (Dundurs and Mura,
1964), the estimates of the present method are in quite close agreement with the exact solutions,
yielding the maximum difference below 5%. On the other hand, the CF between dislocation and
the void is an attractive force, which can explain dislocation annihilation when the void interacts
with dislocation (Alquier et al., 2005). It should be noted that different metal matrices present
different attractive forces, i.e., FNi > FCu > FT i > FAl, revealing a correlation with the elastic
modulus. With an increase of ∆T , the attraction force decreases progressively, suggesting that
the probability of dislocation annihilation becomes smaller. As seen from Fig. 3b, the CF be-
tween dislocation and graphene presents a repulsion force, indicating that graphene hinders the
movement of dislocations to the interface between metal and graphene. These results suggest
that multiple dislocations pile up at the interface, which is well consistent with the experimental
results (Kim, et al., 2013), thereby resulting in the strengthening effect of graphene/metal com-
posites. The repulsion force decreases as ∆T increases, implying that the ability of graphene to
block dislocations crossing the interface is weakened.

Figure 4 illustrates a schematic diagram of the interaction between dislocation, graphene
and two circular voids of radius R which are, respectively, centered at (r0, α) and (r0,−α), and
symmetric along the x axis. As shown in Fig. 4, the total configurational forces are related to
relative positions of voids, dislocation and graphene as well as Young’s modulus of the metal
matrix in Fig. 5. Keeping a fixed distance r0 between voids and dislocation at ∆T = 400K, a
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Table 1. Mechanical parameters used for model calculations (Ledbetter, 1982; Fisher and
Renken, 1964; Gray, 1972; Callister and Rethwisch, 2014)

Temperature [K]
200 250 300 350 400

Copper
E [GPa] 133 130 128 126 124
CTE [10−6/K] 15.2 16.7 17.0 17.3 17.6

Aluminum
E [GPa] 75 73 71 68 67
CTE [10−6/K] 20.2 22.0 23.6 24.1 24.9

Nickel
E [GPa] 231 228 225 221 218
CTE [10−6/K] 11.2 12.2 12.8 13.5 14.1

Titanium
E [GPa] 113 108 103 100 96
CTE [10−6/K] 7.4 8.1 8.6 9.1 9.4

Fig. 4. Schematic of the interaction between dislocation, two voids and graphene

Fig. 5. Comparison of the total configurational forces between dislocation, graphene and two circular
voids for different metal matrices at ∆T = 400K

shielding effect is present on CF (attraction) when the angle α changes from 0◦ to 45◦ or from
90◦ to 135◦. Outside these regions, there is an amplification effect on CF. Furthermore, for edge
dislocation, the configurational forces Fx and Fy are the glide and climb forces, respectively.
The mobility of edge dislocation is solely dependent on Fx. Hence, further discussion is needed
for Fx.
During the deformation process, the voids first appear in the vicinity of the metal/graphene

interface. Under the action of continuous stress, the expanded voids give rise to formation of
cracks. For most of metal materials, plastic zones will be generated at the tip of the cracks to
prevent crack propagation (intrinsic toughening). When the size of the plastic zone is very small
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compared to the cracks, it is usually designated as the small scale yielding. At this case, the
stress-strain field in the plastic zone of the crack tip is still controlled by the K-field. Therefore,
linear elastic fracture mechanics is still applicable by an appropriate correction.
The combined strain field of the edge dislocation field (Mura, 1987) and the externally applied

strain field of mode I/II crack tip (Li and Chen, 2002; Yang et al., 2004) are, respectively

eA11 = −
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KI√
2πr
cos
θ

2

(

1− 2ν − sin
θ

2
sin
3θ

2

)

eA22 = −
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KI√
2πr
cos
θ

2

(

1− 2ν + sin
θ

2
sin
3θ

2

)

eA12 =
b cos θ

4πr(1− ν)
+
1 + ν

Em

KI√
2πr
cos
θ

2
sin
θ

2
cos
3θ

2

(3.5)

and

eA11 = −
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KII√
2πr
sin
θ

2

(

−2 + 2ν − cos
θ

2
cos
3θ

2

)

eA22 = −
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KII√
2πr
sin
θ

2

(

2ν + cos
θ

2
cos
3θ

2

)

eA12 =
b cos θ

4πr(1− ν)
+
1 + ν

Em

KII√
2πr
cos
θ

2

(

1− sin
θ

2
sin
3θ

2

)

(3.6)

under the plane strain condition.
Based on the stress field of mode I/II crack, the von Mises effective stress σe is expressed as

σe =
KI√
2πr
cos
θ

2

√

(1− 2ν)2 + 3 sin2
θ

2
(3.7)

and

σe =
KII√
2πr

√

3 cos2
θ

2

(

1− 3 sin2
θ

2

)

+ 4(ν2 − ν + 1) sin2
θ

2
(3.8)

respectively.
The above formulas can still be approximated at the elastic zone and plastic zone boundary,

i.e., r = rp, where the von Mises effective stress σe is equal to the initial yield strength σys (Li
et al., 2011). Thus, the critical stress intensity factors of mode I/II crack are obtained

KCI =
σys
√
2πr

cos θ2

√

(1− 2ν)2 + 3 sin2 θ2

KCII =
σys
√
2πr

√

3 cos2 θ2

(

1− 3 sin2 θ2
)

+ 4(ν2 − ν + 1) sin2 θ2

(3.9)

In the case of small scale yielding and assumption of elastic-perfectly plastic, the elastic zone
and plastic zone boundary of mode I/II crack yields

rp =
K2I
2πσ2ys

cos2
θ

2

[

(1− 2ν)2 + 3 sin2
θ

2

]

(3.10)

and

rp =
K2II
2πσ2ys

[

3 cos2
θ

2

(

1− 3 sin2
θ

2

)

+ 4(ν2 − ν + 1) sin2
θ

2

]

(3.11)

respectively.
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The elastic strain eij in the plastic zone can be obtained by substituting KI = K
C
I and

KII = K
C
II in the second term on the right-hand side of Eqs. (3.5) and (3.6), respectively. From

Eq. (2.5), the strains ε are

ε11 =
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KCI −KI√
2πr

cos
θ

2

(

1− 2ν − sin
θ

2
sin
3θ

2

)

ε22 =
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KCI −KI√
2πr

cos
θ

2

(

1− 2ν + sin
θ

2
sin
3θ

2

)

ε12 = −
b cos θ

4πr(1− ν)
+
1 + ν

Em

KCI −KI√
2πr

cos
θ

2
sin
θ

2
cos
3θ

2

(3.12)

and

ε11 =
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KCII −KII√
2πr

sin
θ

2

(

−2 + 2ν − cos
θ

2
cos
3θ

2

)

ε22 =
b(1− 2ν) sin θ
4πr(1− ν)

+
1 + ν

Em

KCII −KII√
2πr

sin
θ

2

(

2ν + cos
θ

2
cos
3θ

2

)

ε12 = −
b cos θ

4πr(1− ν)
+
1 + ν

Em

KCII −KII√
2πr

cos
θ

2

(

1− sin
θ

2
sin
3θ

2

)

(3.13)

respectively.
Combining Eqs. (3.12), (3.13), (2.4), (2.9) and (2.11), followed by numerical integration of

Eq. (2.12), the CFs between the dislocation and plastic zone of mode I/II crack tip can be
obtained, respectively, as

F plastic zone−dislocationx−I =

∫

Ω

dF plastic zone−dislocationx−I (3.14)

and

F plastic zone−dislocationx−II =

∫

Ω

dF plastic zone−dislocationx−II (3.15)

respectively. The integrations are conducted on the whole domain Ω occupied by the plastic
zone. To eliminate strain singularity in Eqs. (3.12) and (3.13), a range of 0.0005rp ¬ r ¬ rp is
defined.
Under the total strain field of edge dislocation field and the applied strain field of mode I/II

crack tip, combining Eqs. (2.6), (2.7), (2.9) and (2.11), followed by numerical integration of Eq.
(2.12), the CFs between dislocation and graphene can be obtained as

F graphene−dislocationx−I =

∫

Ω

dF graphene−dislocationx−I (3.16)

and

F graphene−dislocationx−II =

∫

Ω

dF graphene−dislocationx−II (3.17)

respectively.
The yield strength σys at the temperature T is (Li et al., 2016)

σys =

√

√

√

√

E(T )

E(T0)

(

1−
∫ T
T0
Cp(T ) dT

∫ Tm
T0
Cp(T ) dT

)

σys0 (3.18)



Interaction between edge dislocation and inhomogeneity... 129

where ET is Young’s modulus at the temperature T , T0 is an arbitrary reference temperature,
Tm is the melting point of the material and σys0 is the yield strength at the temperature T0. In
this work, the effect of temperature dependent Poisson’s ratio ν on σys is neglected (ν = 0.3).

Cp(T ) is the specific heat capacity for constant pressure and temperature T , expressed as
(Ye, 2002)

Cp(T ) = A1 +A2 · 10−3T +A3 · 105T−2 +A4 · 10−6T 2 +A5 · 108T−3 (3.19)

Taking the room temperature as the reference temperature, the yield strengths for titanium,
nickel, copper and aluminum are 170MPa (annealed), 148MPa (annealed), 69MPa (hot rolled),
34MPa (annealed), respectively (Callister and Rethwisch, 2014). Substituting Eq. (3.19) into
(3.18), σys can be obtained, which is shown in Fig. 6.

Fig. 6. The yield strength for Ti, Ni, Al, Cu matrix at different temperatures

Fig. 7. Schematic of the interaction between dislocation, graphene and the plastic zone of mode I crack
tip

In the present work, the image force acting on edge dislocation induced by the free surface of
the crack and the slip force acting on edge dislocation induced by the crack-tip stress field are not
considered. For simplicity, dislocation is placed at the crack tip utilizing the method reported by
Zhang et al. (2013). The diagrams in Fig. 7 present the interaction between dislocation, graphene
and the plastic zone of mode I crack tip. As shown in Fig. 8, under the combined strain field, the
CF (Fglide ) between the plastic zone of mode I crack tip and dislocation exhibits as repulsion,
which decreases with an increase of ∆T , implying that the ability of dislocation deviating from
the plastic zone becomes weakened. The more dislocations in the plastic zone, the stronger
plasticity and toughness of composites. Fglide between graphene and dislocation is attractive,
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and increases as ∆T increases. Besides, the total Fglide (repulsive force) between mode I plastic
zone, graphene and dislocation decreases with an increase of ∆T , and FT i > FNi > FCu > FAl
at the same ∆T , which is related to the yield strength.

Fig. 8. Comparison of the configurational forces Fglide (in unit of µb/[π(1− 2ν)]) between dislocation,
graphene and the plastic zone of mode I crack tip for different ∆T at KI = 200MPa

√
m,

b = 1 · 10−10m: (a) Al matrix, (b) Cu matrix, (c) Ni matrix, (d) Ti matrix

Figure 9 displays a schematic diagram of the interaction between dislocation, graphene and
the plastic zone of mode II crack tip. Under the combined strain field, Fglide between dislocation
and graphene is a repulsive force for Al, Cu, Ti and Ni matrix. With an increase of ∆T , an
amplification effect is present on Fglide . On the other hand, Fglide between the plastic zone of
mode II crack tip and dislocation is attractive, which decreases as ∆T increases for Al, Cu and
Ni matrices, suggesting that the attraction of the plastic zone to dislocations is attenuated.
However, the effect of temperature on Fglide between the plastic zone and dislocation is reversed
for the Ti matrix. For different metal matrices, it has a remarkable difference for the total
interaction forces of mode II plastic zone, graphene and dislocation. The total Fglide becomes
repulsive, and increases as ∆T increases for Al matrix, whereas the total Fglide displays an
attractive force, and decreases with an increase of ∆T for Ni and Cu matrices. Nevertheless,
there is an opposite trend for Ti matrix.
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Fig. 9. Schematic of the interaction between dislocation, graphene and the plastic zone of
mode II crack tip

Fig. 10. Comparison of the configurational forces Fglide (in unit of µb/[π(1− 2ν)]) between dislocation,
graphene and the plastic zone of mode II crack tip for different ∆T at KII = 200MPa

√
m,

b = 1 · 10−10m: (a) Al matrix, (b) Cu matrix, (c) Ni matrix, (d) Ti matrix

4. Conclusions

In this study, an inhomogeneous inclusion was transformed into a homogenous one with an
equivalent transformation strain based on the Eshelby theory. The interaction between edge
dislocation and inhomogeneity was evaluated by the configuration force theory. A general so-
lution for the configuration force was developed to investigate the interaction between edge
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dislocation and inhomogeneity of an arbitrary shape under coupled thermomechanical strains.
The presented solutions can provide a novel way to describe the interaction mechanism between
graphene and internal defects of metals, which is in good accordance with the experimental re-
sults. More importantly, the present approach with the basic equation in the form of an integral
can be applicable to inhomogeneity with an arbitrary shape and properties.
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